

B.K. BIRLA CENTRE FOR EDUCATION

SARALA BIRLA GROUP OF SCHOOLS A CBSE DAY-CUM-BOYS' RESIDENTIAL SCHOOL

TERM-1 EXAMINATION, 2025-26 MARKING SCHEME - MATHEMATICS (041)

Class: X	Time: 3 hrs
Date: 08/09/25	Max Marks: 80
Adm No:	Roll.No.

General Instructions:

- 1. This Question Paper has 5 Sections A, B, C, D and E.
- 2. Section A has 20 MCQs carrying 1 mark each
- 3. Section B has 5 questions carrying 02 marks each.
- 4. Section C has 6 questions carrying 03 marks each.
- 5. Section D has 4 questions carrying 05 marks each.
- 6. Section E has 3 case-based integrated units of assessment (04 marks each) with sub-parts.
- 7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks have been provided. An internal choice has been provided in the 2marks questions of Section E
- 8. Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if not stated.

SECTION A

1.	The graph of a q	_l uadratic polynomi	al p(x) passes thro	ugh the points (-6,0),	1m
	(0, -30), (4, -20) a	and (6,0). The zeroe	s of the polynomial	l are	
	(a) -6,0	(b) 4,6	(C) -30,-20	(d) -6,6	
2.	The value of k fo	or which the system	of equations 3x-k	y = 7 and $6x + 10y = 3$ is	1m
	inconsistent, is				
	(a) -10	(b) -5	(C) 5	(d) none of these	
3.	The distance of	the point (-3,4) fron	n the x-axis is		1m
	(a) 3	(b) -3	(C) 4	(d) 5	
4.	If nth term of an	A.P. is 7n-4 then t	he common differe	ence of the A.P. is	1m
	(a) 7	(b) 7n	(C) -4	(d) none of these	
5.	The pair of equa	1 + 3y = 5 and $2x + 3y = 5 $ and $3x + 3y = 5$	nd 4x + 6y = 15 has	•	1m
	(a) a unique	(b) exactly two	(C) infinitely	(d) no solutions	
	solution	solutions	many solutions		
6.	If $\tan\theta = 5/2$ the	$en \frac{4 \sin \theta + \cos \theta}{4 \sin \theta - \cos \theta} is equ$	al to		1m
				(d) none of these	
7.	If one root of the	e equation $2x^2 + ax$	+ 6 = 0 is 2 the a is		1m
	(a) 7	(b) -7	(C) 7/2	(d) -7/2	
8.	A quadratic poly	ynomial having zer	oes - $\sqrt{5}/2$ and $\sqrt{5}/2$	2 is	1m
	$(a x^2 - 5\sqrt{2} x + 1)$	(b) $8x^2-20$	(C) $15x^2-6$	(d) none of these	
9.	If $\theta = 30^{\circ}$ then the	ne value of $3\tan\theta$ is			1m
	(a) 1	(b) $1/\sqrt{3}$	(C) $3/\sqrt{3}$	(d) none of these	
10.	What is the com	mon difference of a	n A.P. where a_{18} –	$a_{14} = 32$?	1m
	(a) 8	(b) -8	(C) 4	(d) -4	
11.	If $\sin \alpha = \frac{1}{2}$ then	$\cot \alpha = ?$			1m
	(a) $1/\sqrt{3}$	(b) √3	(C) $\sqrt{3/2}$	(d) 1	

12.	If $\cos \alpha = 3/5$				1m
	(a) 4/3	(b) 3/5	(C) 3/4	(d) none of these	
13	If the height of	of the vertical pole	is equal to the leng	th of its shadow on the	1m
	ground, the a	ngle of elevation of	the sun is		
	(a) 0^0	(b) 30^0	$(C) 45^{0}$	(d) 60^{0}	
14	If the length of	of the shadow of a t	tower is $\sqrt{3}$ times its	s height then the angle of	1m
	elevation of th	ne sun is			
	(a) 0^0	(b) 45^0	$(C) 30^{0}$	(d) 60°	
15	The area of a	sector of a circle v	with a radius of 6 cr	m if the angle of the sector is	1m
	60°.				
	(a) 142/7	(b) 152/7	(c) 132/7	(d) none of these	
16	A point on the	e x-axis divides the	line segment joinir	ng the points A (2, -3) and B	1m
	(5, 6) in the ra	atio 1:2.			
	(a) (4,0)	(b) (7/2,3/2)	(c) (3,0)	(d) none of these	
17	The mode and	ł mean are given b	y 8 and 7, respectiv	vely. Then the median is:	1m
	(a) 2/23	(b) 3/22	(c) 22/3	(d) none of these	
18	The class inte	rval of a given obs	ervation is 20 to 25	, then the class mark for this	1m
	interval will b	e:			
	(a) 10	(b) 15	(c) 22.5	(d) none of these	
19	Assertion (A)	:- If the value of m	ode and mean is 7 a	and 8 respectively, then the	1m
	value of medi	an is 23.			
	Reason (R):-	3Median = mode +	2 mean.		
	(a) Both Asse	rtion (A) and Reas	on (R) are the true	and Reason (R) is a correct	
	explanation o	f Assertion (A).			
	(b) Both Asse	rtion (A) and Reas	on (R) are true but	Reason (R) is not a correct	
	explanation o	f Assertion (A).			
	(c) Assertion	(A) is true and Rea	son (R) is false.		
	(d) Assertion ((A) is false and Rea	son (R) is true.		
		. •			
20	Assertion (A)	:- The point (a,0) li	es on the x-axis.		1m
			es on the y-axis is o	f the form (0,a).	
	(a) Both Asse	rtion (A) and Reas	on (R) are the true	and Reason (R) is a correct	
		f Assertion (A).	` '	. ,	
	-	• •	n (R) are true but R	Reason (R) is not a correct	
	, ,	f Assertion (A).	,	,	
	-	(A) is true and Rea	son (R) is false.		
		(A) is false and Re			
	· /		,		
			SECTION B		
21	Prove that 5 +	+ $2\sqrt{5}$ is an irration			2m
		_ , _ , _ , _ ,			
			OR		
	Prove that 2x	3x11 + 11 is a com			
A:-	Supposition		r		1m
		on and contradicti	on		1m
		or and converse of			1m
		s product of 3 or me			1m
22				the value of m for which y =	2m
	mx+3.		with month initial	the same of many wines y	

A:-

Step 1: Solve the system of equations

We will solve the first two equations using the elimination method.

Equations:

(1) 2x + 3y = 11

(2) 2x - 4y = -24

Subtract (2) from (1):

$$(2x + 3y) - (2x - 4y) = 11 - (-24)$$

 $2x + 3y - 2x + 4y = 11 + 24$
 $7y = 35 \Rightarrow y = 5$

Substitute y=5 into equation (1):

$$2x + 3(5) = 11 \Rightarrow 2x + 15 = 11 \Rightarrow 2x = -4 \Rightarrow x = -2$$

Solution of the system is:

$$x = -2, \quad y = 5$$

Step 2: Use y = mx + 3

Substitute x=-2,y=5 into this equation:

$$5=m(-2)+3\Rightarrow 5=-2m+3\Rightarrow -2m=5-3=2\Rightarrow m=-1$$

@ Final Answer:

m = -1

Find the values of p for which the quadratic equation $4x^2 + px + 3 = 0$ has equal 23 roots.

A:-

Given:
$$4x^2 + px + 3 = 0$$

Here a = 4, b = p. (= 3 ... [Equal roots

D = 0 (Equal roots)

As
$$b^2 - 4ac = 0$$

$$\therefore (p)^2 - 4(4)(3) = 0$$

$$= p^2 - 48 = 0 \Rightarrow p^2 = 48$$

$$p = \pm \sqrt{16 \times 3} = \pm 4\sqrt{3}$$

1m 2m

1m

24 A horse, a cow and a goat are tied, each by ropes of length 14m, at the corners A, B and C respectively, of a grassy triangular field ABC with sides of lengths 35m, 40m and 50 m. Find the area of grass field that can be grazed by them.

OR

Find the area of the major segment (in terms of π) of a circle of radius 5cm, formed by a chord subtending an angle of 90° at the centre.

A:-

area of grass field that can be grazed by them

$$= \frac{\theta_1}{360^{\circ}} \times \pi \, r^2 + \frac{\theta_2}{360^{\circ}} \times \pi \, r^2 + \frac{\theta_3}{360^{\circ}} \, x \, \pi \, r^2$$

$$= \frac{\pi r^2}{360^{\circ}} (\theta_1 + \theta_2 + \theta_3)$$

$$= \frac{\pi r^2}{360^{\circ}} \times 180^{\circ}$$

$$= \frac{22}{7} \times \frac{14 \times 14}{2}$$

$$= 308 \text{ m}^2$$

$$=\frac{22}{7} \times \frac{14 \times 14}{2}$$

1_m

1m

Area of minor segment= Area of sector - area of triangle $\frac{=\frac{90^{\circ}}{360^{\circ}}\pi\ r^2-\frac{1}{2}\times r^2}{=(\frac{25}{4}\pi-\frac{25}{2})\ cm^2}$

$$= \frac{90^{\circ}}{360^{\circ}} \pi r^2 - \frac{1}{2} \times r^2$$

$$= (\frac{25}{4} \pi - \frac{25}{2}) \text{ cm}^2$$

Area of major segment = Area of circle – Area of minor segment = $\pi \ 5^2 - (\frac{25}{4} \ \pi - \frac{25}{2})$ = $25\pi - \frac{25}{4} \ \pi + \frac{25}{2}$ = $(\frac{75}{4} \ \pi + \frac{25}{2}) \ \text{cm}^2$

$$= \pi 5^{2} - (\frac{25}{4}\pi - \frac{25}{2})$$

$$= 25\pi - \frac{25}{4}\pi + \frac{25}{2}$$

1m 2m

1m

25 The sum of the first n terms of an AP is given by

$$S_n = 5n^2 + 3n$$

- (a) Find the first term and the common difference of the AP.
- (b) Find the 10th term of the AP.

A:-

First term
$$a = S_1 = 5(1)^2 + 3(1) = 8$$

$$a_2 = S_2 - S_1 = [5(4) + 3(2)] - 8 = (20 + 6) - 8 = 18$$

Common difference $d = a_2 - a_1 = 18 - 8 = 10$

1_m

$$a_{10} = S_{10} - S_9$$

$$S_{10} = 5(100) + 3(10) = 500 + 30 = 530$$

$$S_9 = 5(81) + 3(9) = 405 + 27 = 432$$

1m

 $a_{10} = 530 - 432 = 98$

SECTION C

Find the coordinates of the points of trisection of the line segment joining **26** A(2, -2) and B(-7, 4).

3m

A:-First point (1:2):

$$x = \frac{1 \times (-7) + 2 \times 2}{1 + 2} = \frac{-7 + 4}{3} = \frac{-3}{3} = -1$$
$$y = \frac{1 \times 4 + 2 \times (-2)}{3} = \frac{4 - 4}{3} = 0$$

1m

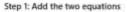
1m

Second point (2:1):

$$x = \frac{2 \times (-7) + 1 \times 2}{3} = \frac{-14 + 2}{3} = \frac{-12}{3} = -4$$

$$y = \frac{2 \times 4 + 1 \times (-2)}{3} = \frac{8 - 2}{3} = \frac{6}{3} = 2$$

1_m


Answer: Points are (-1, 0) and (-4, 2)

3m

27 Solve the following pair of equations:

$$49x + 51y = 499$$

$$51x + 49y = 501$$

$$(49x + 51y) + (51x + 49y) = 499 + 501$$

 $(49x + 51x) + (51y + 49y) = 1000$

$$100x + 100y = 1000$$

Divide both sides by 100:

x + y = 10 (Equation 3)

Step 2: Subtract the second equation from the first

$$(49x + 51y) - (51x + 49y) = 499 - 501$$

 $(49x - 51x) + (51y - 49y) = -2$
 $-2x + 2y = -2$

1m

Divide both sides by 2:

-x + y = -1 (Equation 4)

Step 3: Solve the system of equations

From Equation (3):

$$x + y = 10$$

From Equation (4):

$$-x + y = -1$$

Now add Equation (3) and Equation (4):

1m

$$(x+y)+(-x+y)=10+(-1)$$

$$(0x + 2y) = 9$$

$$2y=9\Rightarrow y=\frac{9}{2}=4.5$$

Substitute y=4.5 into Equation (3):

$$x+4.5=10 \Rightarrow x=10-4.5=5.5$$

Final Answer:

x = 5.5, y = 4.5

1m

OR

Solve the following pair of linear equations for x and y:

$$(bx)/a+(ay)/b = a^2 + b^2$$
; $x + y = 2ab$

A:- Solution

$$x = ab$$
, $y = ab$

2m 1m 3m

Find the number of all three-digit natural numbers which are divisible by 8.

A:- Step 1: First 3-digit number divisible by 8

Smallest 3-digit number = 100

 $100 \div 8 = 12.5$ \Rightarrow first multiple = $13 \times 8 = 104$

1m

Step 2: Last 3-digit number divisible by 8

Largest 3-digit number = 999

 $999 \div 8 = 124.875 \Rightarrow$ last multiple = $124 \times 8 = 992$

1m

1m

Step 3: Count

Numbers form an AP: 104, 112, 120, . . . , 992

Here: a=104, d=8, l=992

$$n = \frac{l-a}{d} + 1 = \frac{992-104}{8} + 1 = \frac{888}{8} + 1 = 111 + 1 = 112$$

29 Prove that:

$$\frac{\sin \theta - 2\sin^3 \theta}{2\cos^3 \theta - \cos \theta} = \tan \theta$$

A:-We start with

$$\frac{\sin\theta - 2\sin^3\theta}{2\cos^3\theta - \cos\theta}.$$

1. Factor out $\sin \theta$ and $\cos \theta$:

$$=\frac{\sin\theta(1-2\sin^2\theta)}{\cos\theta(2\cos^2\theta-1)}.$$

2. Use the identity $\sin^2\theta = 1 - \cos^2\theta$ to rewrite $1 - 2\sin^2\theta$:

1m

$$1 - 2\sin^2\theta = 1 - 2(1 - \cos^2\theta) = 2\cos^2\theta - 1.$$

So the fraction becomes

$$\frac{\sin\theta(2\cos^2\theta-1)}{\cos\theta(2\cos^2\theta-1)}.$$

3. Cancel the common factor $2\cos^2\theta-1$ (when it is nonzero) to get

$$\frac{\sin \theta}{\cos \theta} = \tan \theta.$$
 2m

30 For the quadratic polynomial

$$p(x) = 2x^2 - 5x + 3$$

- (a) Find the sum and product of its zeros.
- (b) Form a quadratic polynomial whose sum of zeros is 4 and product of zeros is 3.

A:-

Sum of zeros
$$=-\frac{b}{a}=-\frac{-5}{2}=\frac{5}{2}$$

Product of zeros $=\frac{c}{a}=\frac{3}{2}$

2m

(b)

Required polynomial:

$$x^2 - (\operatorname{sum})x + \operatorname{product} = x^2 - 4x + 3$$

1m

The sum of the zeros of a quadratic polynomial is 3/2 and their product is 2.

- (a) Find the polynomial.
- (b) Verify the relationship between coefficients and zeros.

A:-

(a) Polynomial:

$$x^2-\left(\frac{3}{2}\right)x+2=0$$

Multiply through by 2:

1m

$$2x^2 - 3x + 4$$

(b) For
$$2x^2 - 3x + 4$$
:

$$\begin{aligned} & \text{Sum} = -\frac{-3}{2} = \frac{3}{2} \text{ } \boxed{2} \\ & \text{Product} = \frac{4}{2} = 2 \text{ } \boxed{2} \end{aligned}$$

$$Product = \frac{4}{5} = 2$$

2m

31 Heights of students of class X are given in the following frequency distribution: 3m

Height (in cm)	Number of students
150-155	15
155-160	8
160-165	20
165-170	12
170-175	5

Find the modal height.

A:- Solution:

Height (in cm)	No. of students
150-155	15
155-160	8 f ₀
160-165	20 (Maximum) f_1
165-170	12 f ₂
170-175	5

Maximum frequency is 20

.: Modal class is 160 - 165

Mode =
$$l + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$$

= $160 + \frac{20 - 8}{40 - 8 - 12} \times 5 = 160 + \frac{12 \times 5}{20}$
= $160 + 3 = 163$

.: The modal height = 163 cm

2m

SECTION D

Is it possible to design a rectangular park of perimeter 80 m and area 400 m²? 5m If so, find its length and breadth.

A:- Let the length of rectangular park be x.

Then, the perimeter of rectangular park

$$\Rightarrow$$
 2(x + Breadth) = 80

$$\Rightarrow$$
 Breadth = $40 - x$

.. Area of rectangular park = Length × Breadth

$$\Rightarrow x(40-x) = 400$$

$$\Rightarrow \qquad 40x - x^2 = 400$$

 $x^2 - 20x - 20x + 400 = 0$

$$\Rightarrow x^2 - 40x + 400 = 0$$

$$\Rightarrow (x-20)(x-20) = 0$$

 \Rightarrow x = 20Thus, the rectangular park is **possible** to

design. So, length of park = 20 m and its

breadth = 40 - 20 = 20 m.

1m

2m

2m

OR

Solve the following quadratic equation for x: $9x^2 - 6b^2x - (a^4 - b^4) = 0$

A:-
$$9x^{2} - 6b^{2}x - (a^{4} - b^{4}) = 0$$

$$\Rightarrow 9x^{2} - 6b^{2}x - (a^{2} - b^{2})(a^{2} + b^{2}) = 0$$

$$\Rightarrow 9x^{2} + 3(a^{2} - b^{2})x - 3(a^{2} + b^{2})x - (a^{2} - b^{2})(a^{2} + b^{2}) = 0$$

$$\Rightarrow 3x[3x + (a^{2} - b^{2})] - (a^{2} + b^{2})[3x + (a^{2} - b^{2})] = 0$$

$$\Rightarrow [3x - (a^{2} + b^{2})][3x + (a^{2} - b^{2})] = 0$$

$$\Rightarrow 3x - (a^{2} + b^{2}) = 0 \text{ or } 3x + (a^{2} - b^{2}) = 0$$

$$\Rightarrow 3x - (a^{2} + b^{2}) = 0 \text{ or } 3x + (a^{2} - b^{2}) = 0$$

$$\Rightarrow x = \frac{a^{2} + b^{2}}{3} \text{ or } x = -\frac{a^{2} - b^{2}}{3}$$

$$\Rightarrow x = \frac{a^{2} + b^{2}}{3} \text{ or } x = \frac{b^{2} - a^{2}}{3}$$

Hence, the factors are $\frac{a^2+b^2}{3}$ and $\frac{b^2-a^2}{3}$.

- The angles of depression of two ships from the top of a lighthouse and on the same side of it are found to be 45° and 30° . If the ships are 200 m apart, find the height of the lighthouse.
- A:- Let:

Height of lighthouse = h m

Distance of nearer ship from base of lighthouse = x m

From tan $45^{\circ} = h / x$:

$$x = h$$

From $\tan 30^{\circ} = h / (x + 200)$:

$$\frac{1}{\sqrt{3}} = \frac{h}{h + 200}$$

$$h + 200 = h\sqrt{3}$$

$$200 = h(\sqrt{3} - 1)$$

$$h = \frac{200}{\sqrt{3} - 1}$$
3m

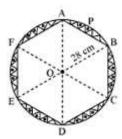
Rationalising:

$$h = \frac{200(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)} = \frac{200(\sqrt{3}+1)}{3-1} = 100(\sqrt{3}+1)$$
$$h \approx 100(1.732+1) = 100 \times 2.732 = 273.2 \text{ m}$$

OR

Two poles of equal heights are standing opposite to each other on either side of the road, which is 100 m wide. From a point between them on the road, the angles of elevation of the top of the poles are 60° and 30° respectively. Find the height of the poles.

Let height = h, distances = x and 100 - x


From tan 60°:
$$h=x\sqrt{3}$$

From tan 30°: $h=\frac{100-x}{\sqrt{3}}$

Equating:
$$x\sqrt{3}=rac{100-x}{\sqrt{3}}$$
 $3x=100-x\Rightarrow x=25$

$$3x = 100 - x \Rightarrow x = 25$$

$$h=25\sqrt{3}\approx 43.3~\mathrm{m}$$

A round table cover has six equal designs as shown in **34** Figure If the radius of the cover is 28 cm, find the cost of making the designs at the rate of Rs. 0.35 per cm². (Use $\sqrt{3} = 1.7$)

3m

2m

5m

1m

5m

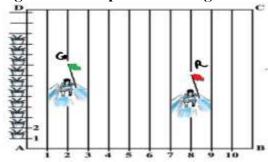
Formula A: -

Calculations 2mCost formula 1m **Calculations** 1m

Find the values of x and y if the median for the following data is 31. **35**

800	Class	Frequency
-	0-10	5
	10-20	x
	20-30	6
	30-40	y
	40-50	6
	50-60	5
	Total	40

x = 8, y = 10


SOILLIE	34.5		
	Class	f	c.f.
	0-10	5	5
	10-20	x	5 + x
	20-30	6	11 + x
	30-40	у	11 + x + y
	40-50	6	17 + x + y
	50-60	5	22 + x + y
	Total	40	
	x + y + 22 = 40 x + y = 40 - 22 =	18	mes
	y = 18 - x		(i)
	$\frac{n}{2} = \frac{40}{2} = 20$		
	Median is 31		[Given
	Median class is 3	30 - 40	
	(In	1 1	
	$lian = I + \left(\frac{\left(\frac{n}{2} - c.f\right)}{f}\right)$	200	
	$31 = 30 + \left(\frac{20 - (}{}\right)$		
⇒	$31 - 30 = \frac{(20 - 1)}{18 - 1}$	$\frac{1-x)}{x} \times 10$	[From (i)
⇒ 18 -	-x = (9 - x)10		
→ 18 -	-x = 90 - 10x		

 $\Rightarrow 18 - x = (9 - x)10$ $\Rightarrow 18 - x = 90 - 10x$ $\Rightarrow -x + 10x = 90 - 18$ $\Rightarrow 9x = 72$ $\Rightarrow x = 8$ Putting the value of x in (i), we have y = 18 - 8 = 10

1m

SECTION E

In order to conduct Sports Day activities in your School, lines have been drawn with chalk powder at a distance of 1 m each, in a rectangular shaped ground ABCD, 100 flowerpots have been placed at a distance of 1 m from each other along AD, as shown in given figure below. Niharika runs 1/4 th the distance AD on the 2nd line and posts a green flag. Preet runs 1/5 th distance AD on the eighth line and posts a red flag.

- (i) Find the position (coordinates) of green flag.
- (ii) Find the position (coordinates) of red flag.
- (iii) Find the distance between green and red flag.

OR

What are the coordinates of mid-point of straight line joining green and red flag?

A:- (i) (2,25) (ii) (8,20)

(iii) square root of 61 Or

(5,22.5)

The owner of a taxi company decides to run all the taxis on CNG fuel instead of petrol/diesel. The taxi charges in the city are comprised of fixed charges

1m

1_m

2m

together with the charge for the distance covered. For a journey of 12 km, the charge paid is Rs. 89; for a journey of 20 km, the charge is Rs.145.

- (i) What are the equations formed for both conditions?
- (ii) What will a person have to pay for travelling a distance of 30 km?
- (iii) Why did he decide to use CNG for his taxi as fuel?

Or

If a customer sits in the car and get down immediately without travelling, how much he needs to pay?

- A:- (i) x+12y = 89 x+20y = 145
 - (ii) Values of x and y1mSolution1m(iii) Eco friendly1m

Or

Value of x

- A stadium has rows of seats in AP. The first row has 50 seats, the second row has 54 seats, the third row has 58 seats, and so on.
 - (a) Write the first term and common difference of the AP formed by the seats in each row.
 - (b) Find the number of seats in the 15th row.
 - (c) Find the total number of seats in the first 15 rows.

OR

If the total number of seats is 2070, find the number of rows in the stadium.

A:- (a)
$$a = 50, d = 4$$

(b)
$$a_{15} = 50 + (15-1) imes 4 = 50 + 56 = 106$$
 seats ${f 1m}$

(c)
$$S_{15}=rac{15}{2}[2 imes50+14 imes4]=rac{15}{2} imes156=1170$$
 seats

OR

$$2070 = \frac{n}{2}[100 + (n-1) \times 4]$$

$$4140 = n(96 + 4n)$$
2m

$$4n^2 + 96n - 4140 = 0$$

$$n^2 + 24n - 1035 = 0$$

 $n = \frac{-24 + 66}{2} = \frac{42}{2} = 21$

Answer: 21 rows